Theoretical Models of CSR in Storage Rings

Yunhai Cai SLAC National Accelerator Laboratory

September 20, 2017

Noce 2017, Arcidosso, Italy

1D CSR Wakefield and Impedance in Free Space

Wakefield due to CSR was given by Derbenev, Rossbach, Saldin, Shiltsev (1995) and Murphy, Krinsky, Gluckstern (1997),

$$W(z) = \frac{4\pi\rho^{1/3}}{3^{1/3}} \frac{\partial}{\partial z} z^{-1/3}$$

For z>0. It vanishes when z<0 (force is acting on the electron ahead).

Impedance was derived by Faltens and Laslett in 1973,

$$Z_{CSR}(k) = \left(\frac{4\pi}{c}\right) \frac{\Gamma(\frac{2}{3})(\frac{\sqrt{3}}{2} + \frac{i}{2})}{3^{1/3}} (\rho k)^{1/3}$$

where $\boldsymbol{\rho}$ is the bending radius.

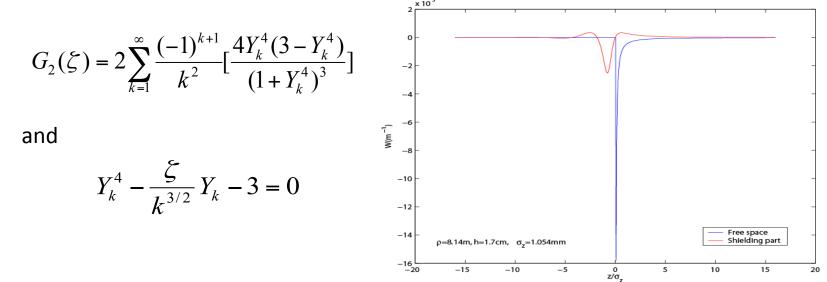
Its simplicity and universal

1D Wakefield of CSR with Shielding Murphy, Krinsky, Gluckstern (1997)

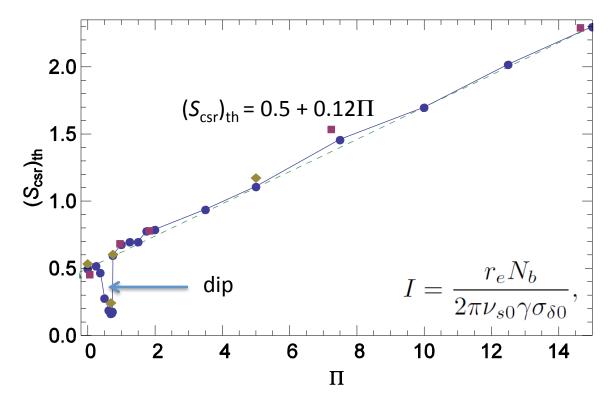
For an electron moving on a circular orbit with bending radius ρ in the middle of two parallel plates that are separated by 2h, the longitudinal wakefield is given by

$$W(\xi) = \frac{8\pi\gamma^4}{3\rho} [w(3\gamma^3\xi) - \frac{3}{8}\frac{1}{\Delta^2\gamma^4}G_2(\xi/\Delta^{3/2})]$$

where $\xi=z/2\rho$, $\Delta=h/\rho$. The formula is valid for $|\xi| <=\Delta <<1$ and $\gamma^2 \Delta >>1$. G₂ can be written as,

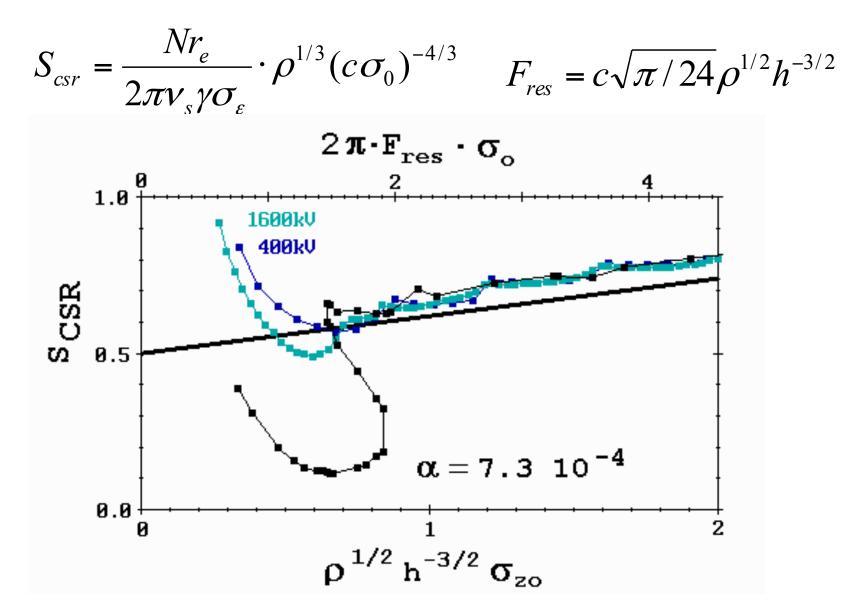


Scaling Property of Microwave Instability Bane, Cai, Stupakov (2010)



It can be shown that there are only two free parameters: the shielding $\Pi = \rho^{1/2} \sigma_{z0} / h^{3/2}$ and the strength $S_{csr} = I \rho^{1/3} / \sigma_{z0}^{4/3}$. For the CSR wake, threshold value of S_{csr} vs. shielding parameter, Π . Symbols give results of the VFP solver (blue circles), the LV code (red squares), and the VFP solver with twice stronger radiation damping (olive diamonds).

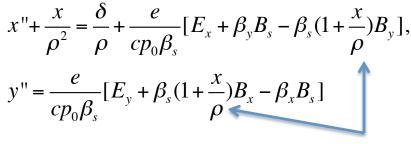
Shielded CSR-Wake - BESSY II



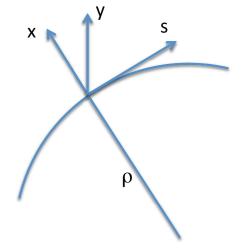
Courtesy of Peter Kuske (Talk at SLAC 2017)

Transverse Force in Curved Geometry

Equation of motion:



Curvature terms



- Curvature terms are conceptually important
- E_x , E_y , B_x , B_y , and B_s are the self-fields
- No explicit dependence on the potentials
- Equations are derived from the Hamiltonian by Courant-Synder

The curvilinear coordinate

Lienard-Wiechert Formula

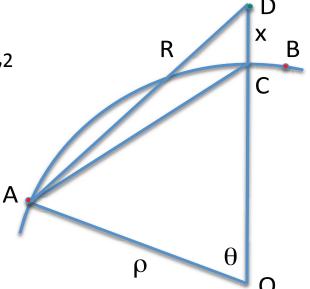
Space Charge

$$\vec{E} = e \left[\frac{\vec{n} - \vec{\beta}}{\gamma^2 (1 - \vec{n} \cdot \vec{\beta})^3 R^2} \right]_{ret} + \left(\frac{e}{c}\right) \left[\frac{\vec{n} \times (\vec{n} - \vec{\beta}) \times \dot{\vec{\beta}}}{(1 - \vec{n} \cdot \vec{\beta})^3 R} \right]_{ret},$$

$$\vec{B} = \vec{n} \times \vec{E}$$
Radiated Field

- Space charge is suppressed by $1/\gamma^2$
- Identify radiated field with CSR
- Subject to retarded condition:

$$t' = t - \frac{R}{c}$$



Electrical and Magnetic Fields

$$E_{s} = \frac{e\beta^{2}[\cos 2\alpha - (1+\chi)][(1+\chi)\sin 2\alpha - \beta\kappa]]}{\rho^{2}[\kappa - \beta(1+\chi)\sin 2\alpha]^{3}}$$
$$E_{x} = \frac{e\beta^{2}\sin 2\alpha[(1+\chi)\sin 2\alpha - \beta\kappa]}{\rho^{2}[\kappa - \beta(1+\chi)\sin 2\alpha]^{3}}$$
$$B_{y} = \frac{e\beta^{2}\kappa[(1+\chi)\sin 2\alpha - \beta\kappa]}{\rho^{2}[\kappa - \beta(1+\chi)\sin 2\alpha]^{3}}$$

where

$$\kappa = \frac{R}{\rho} = \sqrt{\chi^2 + 4(1 + \chi)\sin^2 \alpha},$$

$$\alpha = \theta / 2,$$

$$\chi = x / \rho$$

 They are simplest expressions, especially in the denominator and chosen to suppress the numerical noise near the singularity.

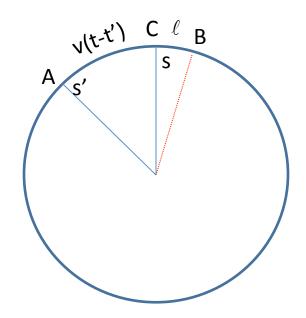
Retarded Time and Longitudinal Position

Retarded Time:

$$t' = t - \frac{R}{c}$$

Time of flight at position s:

$$\ell = v(t-t') - (s-s')$$



It is the variable for the wake. The arc distance to the source particle at the time t. We derive its relation to α .

$$\xi = \alpha - \frac{\beta}{2}\sqrt{\chi^2 + 4(1+\chi)\sin^2\alpha}$$

where $\xi = -\ell/2\rho$ and $\ell = z'-z$.

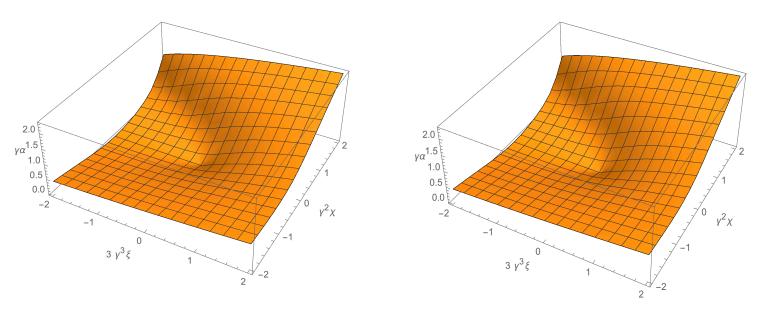
Solutions of the Retarded Condition

Expanding up to the fourth-order of α of the retarded condition, we have

$$\alpha^{4} + \frac{3(1 - \beta^{2} - \beta^{2}\chi)}{\beta^{2}(1 + \chi)}\alpha^{2} - \frac{6\xi}{\beta^{2}(1 + \chi)}\alpha + \frac{3(4\xi^{2} - \beta^{2}\chi^{2})}{4\beta^{2}(1 + \chi)} = 0$$

Numerical

Analytical



Numerical solution is on mesh: 512x512 using Mathematica taking several hours. The differences between the numeric and analytic solutions are at an order of 10^{-6} . Here we have used γ =500.

Analytical Solution of the Retarded Condition

In general, we want to find the roots of the depressed quartic equation:

$$\alpha^4 + \upsilon \alpha^2 + \eta \alpha + \zeta = 0$$

It has analytical solution discovered by Ferrari (1522-1565) by adding and subtracting a term to make a difference of two perfect squares. To find the term, we need to first find the roots of a third-order equation. A root m is given by,

$$m = -\frac{\nu}{3} + (\frac{\zeta}{3} + \frac{\nu^2}{36})\Omega^{-1/3} + \Omega^{1/3}$$

where

$$\Omega = \frac{\eta^2}{16} - \frac{\xi \upsilon}{6} + \frac{\upsilon^3}{216} + \sqrt{\left(\frac{\eta^2}{16} - \frac{\xi \upsilon}{6} + \frac{\upsilon^3}{216}\right)^2 - \left(\frac{\xi}{3} + \frac{\upsilon^2}{36}\right)^3}$$

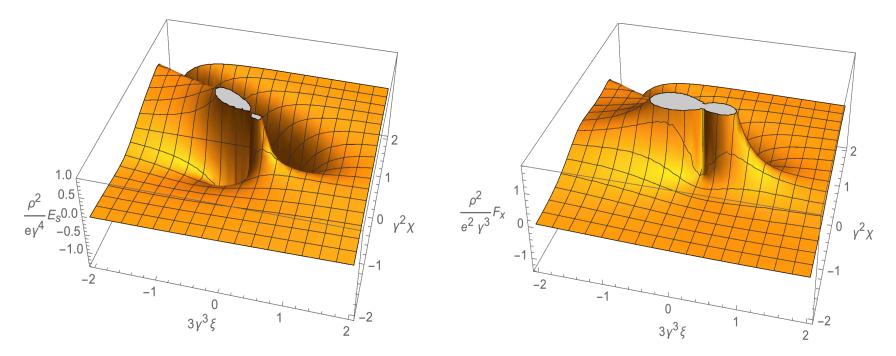
The solution of α :

$$\alpha = \begin{cases} \frac{1}{2}(\sqrt{2m} + \sqrt{-2(m+\nu) - \frac{2\eta}{\sqrt{2m}}}) & \xi \ge 0\\ \frac{1}{2}(-\sqrt{2m} + \sqrt{-2(m+\nu) + \frac{2\eta}{\sqrt{2m}}}) & \xi < 0 \end{cases}$$

Longitudinal Field and Centrifugal Force

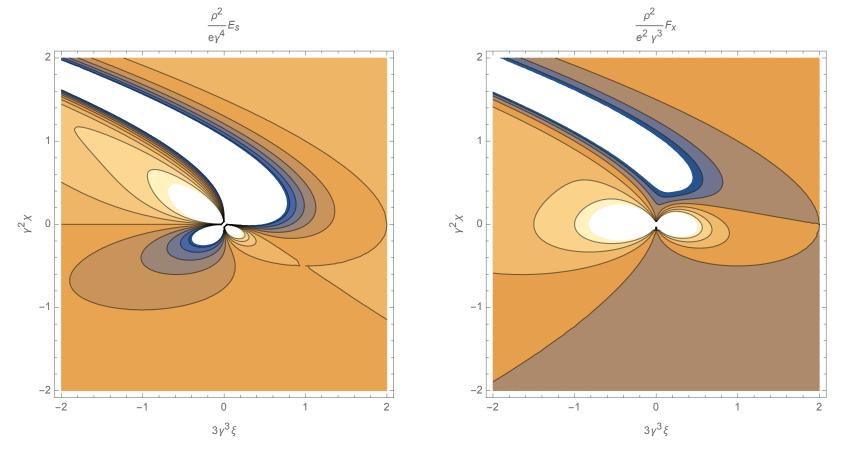
 $\rho^2 E_s / e\gamma^4$

 $\rho^2 F_x / e^2 \gamma^3$



- The scaling with respect to γ is different. Here we have used γ =500.
- The centrifugal force is much hard to compute numerically because of the cancellation between the electric and magnetic forces.

Longitudinal Field and Centrifugal Force



- The scaling with respect to γ is different. Here we have used γ =500.
- The centrifugal force is much hard to compute numerically because of the cancellation between the electric and magnetic forces.

A Longitudinal Potential Ψ_s

Differentiate the retarded condition,

$$\xi = \alpha - \frac{\beta}{2}\sqrt{\chi^2 + 4(1+\chi)\sin^2\alpha}$$

We have,

or

$$d\xi = (1 - \frac{\beta(1+\chi)\sin 2\alpha}{\sqrt{\chi^2 + 4(1+\chi)\sin^2\alpha}})d\alpha$$

Combining it with the longitudinal electric field E_s , we find

where

$$E_{s}d\xi = \frac{e\beta^{2}[\cos 2\alpha - (1+\chi)][(1+\chi)\sin 2\alpha - \beta\kappa]}{\rho^{2}\kappa[\kappa - \beta(1+\chi)\sin 2\alpha]^{2}}d\alpha$$

$$= d(\frac{e\beta^{2}(\cos 2\alpha - \frac{1}{1+\chi})}{2\rho^{2}[\kappa - \beta(1+\chi)\sin 2\alpha]})$$

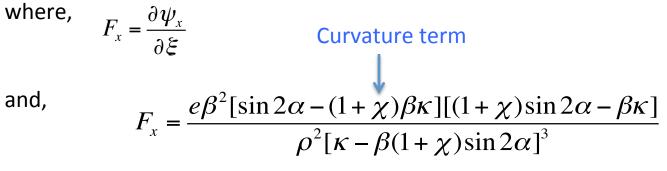
$$E_{s} = \frac{\partial\psi_{s}}{\partial\xi}$$

$$\psi_{s}(\xi,\chi) = \frac{e\beta^{2}(\cos 2\alpha - \frac{1}{1+\chi})}{2\rho^{2}[\kappa - \beta(1+\chi)\sin 2\alpha]}$$

Transverse Force and Potential Ψ_{\star}

Similarly,

$$\begin{split} \psi_{x}(\xi,\chi) &= \frac{e^{2}\beta^{2}}{2\rho^{2}} \{ \frac{1}{|\chi|(1+\chi)} [(2+2\chi+\chi^{2})F(\alpha,\frac{-4(1+\chi)}{\chi^{2}}) - \chi^{2}E(\alpha,\frac{-4(1+\chi)}{\chi^{2}})] \\ &+ \frac{\kappa^{2} - 2\beta^{2}(1+\chi)^{2} + \beta^{2}(1+\chi)(2+2\chi+\chi^{2})\cos 2\alpha - \kappa\beta(1+\chi)\sin 2\alpha[1-\beta^{2}(1+\chi)\cos 2\alpha]}{[\kappa^{2} - \beta^{2}(1+\chi)^{2}\sin^{2}2\alpha]}, \end{split}$$

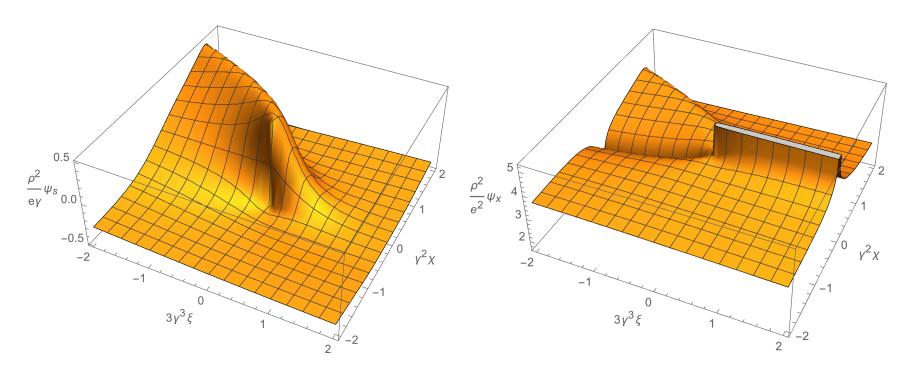


- The Transverse force is the Lorentz force and plus the curvature term •
- The curvature term is necessary for the analytical expression •
- $F(\alpha,k)$ and $E(\alpha,k)$ are the incomplete elliptic integrals of the first and second kind •
- $F_v=0$, so the particles stay in the plane if they are initially in the horizontal plane

Longitudinal and Transverse Potentials

 $ho^2 \Psi_{
m s}/
m e\gamma$

 $\rho^2 \Psi_x / e^2$



- The scaling with respect to γ is different. Here we have used γ =500.
- The "logarithmic" singularity is clearly seen in the transverse potential
- along the line of χ =0.

Wakefields

From the equations of the motion, the changes of the momentum deviation and kick are given by,

$$\delta' = \frac{r_e N_b}{\gamma} W_s(z, \chi),$$
$$x'' = \frac{r_e N_b}{\gamma} W_x(z, \chi)$$

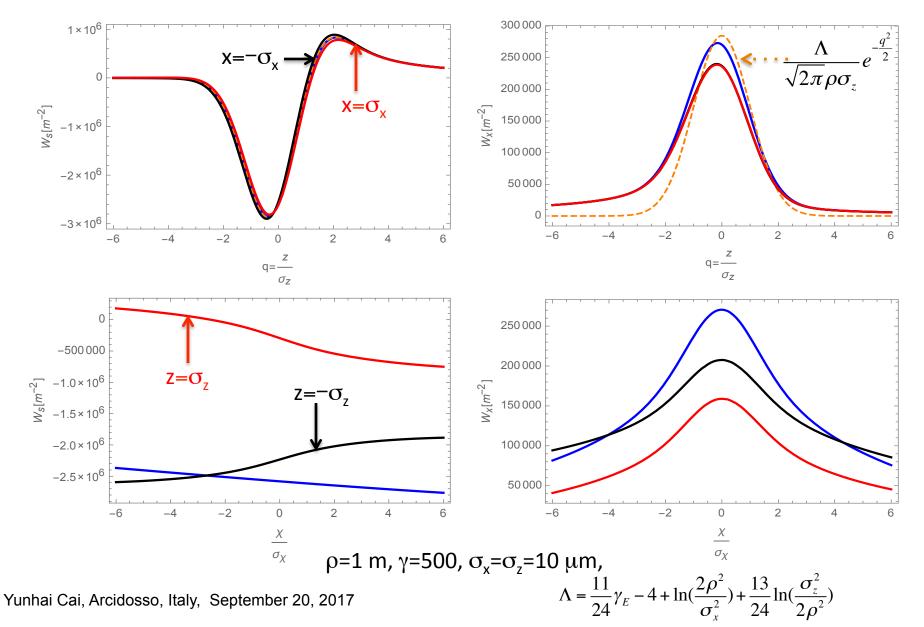
where r_e is the classical electron radius, N_b the bunch population, and the wakes,

$$W_{s}(z,\chi) = \iint Y_{s}(\frac{z-z'}{2\rho},\chi-\chi')\frac{\partial\lambda_{b}(z',\chi')}{\partial z'}dz'd\chi',$$
$$W_{x}(z,\chi) = \iint Y_{x}(\frac{z-z'}{2\rho},\chi-\chi')\frac{\partial\lambda_{b}(z',\chi')}{\partial z'}dz'd\chi',$$

with $Y_s=2\rho\Psi_s/(e\beta^2)$, $Y_x=2\rho\Psi_x/(e\beta)^2$ and λ_b is the normalized distribution.

• These are additional changes when integrating through the bend.

Gaussian Bunch Wakes



Estimate of Emittance Growth

Increase of the projected emittance:

$$\Delta \varepsilon_N = \frac{1}{2} \gamma \beta_x < (\Delta x' - < \Delta x' >)^2 >,$$

From the longitudinal contribution a bending magnet:

$$\Delta \varepsilon_{N} = 7.5 \times 10^{-3} \frac{\beta_{x}}{\gamma} (\frac{N_{b} r_{e} L_{B}^{2}}{\rho^{5/3} \sigma_{z}^{4/3}})^{2},$$

It leads to 38% increase of the emittance for the last dipole. From the centrifugal force, we have

$$\Delta \varepsilon_{N} = \frac{(-3+2\sqrt{3})}{24\pi} \frac{\beta_{x}}{\gamma} (\frac{\Lambda N_{b} r_{e} L_{B}}{\rho \sigma_{z}})^{2},$$

This gives 29% increase of the emittance.

The parameters for the last bend of BC2 in LCLS

Symbol	γ	ε _N	σ _z	N _b	β _x	ρ	L _B
Value	10,000	0.5 µm	10 µm	10 ⁹	5 m	5 m	0.5 m

Conclusion

- The transverse force in the curveted coordinate is essentially the Lorentz force but with a substitution of the transverse magnetic field, B_{x,y}->(1+x/p)B_{x,y}
- The curvature term play a key role for deriving the point-charge wakefield explicitly in terms of the incomplete elliptic integrals of the first and second kind
- Emittance growth due to the centrifugal force is at the same level of the contribution through the energy changes
- A steady-state theory of the coherent synchrotron radiation in two-dimensional free space is developed

1D theory:

- 1) J.B. Murphy, S. Krinsky, and R.L. Gluckstern, "Longitudinal Wakefield for an Electron Moving on a Circular Orbit," Particle Accelerator, Vol. **57**, pp. 9-64, 1997
- 2) M. Dohlus and T. Limberg, "Emittance growth due to wake fields on curved bunch trajectories," Nucl. Instr. and Meth. in Phys. Res. A **393** (1997) 494-499
- 3) E.L. Saldin, E.A. Schneidmiller, and M.V. Yurkov, "On the coherent radiation of an electron bunch moving in arc of a circle," Nucl. Instr. and Meth. In Phys. Res. A **398** (1997) 373-394
- 4) M. Borland, "Simple method for particle tracking with coherent synchrotron radiation," Phys. Rev. ST Accel. Beams, **4**, 070701 (2001)

2D and beyond:

- 1) R. Talman, "Novel relativistic effect important in accelerators," Phys. Rev. Lett. **56**, 1429, 1987
- 2) Y.S. Derbenev and V.D. Shiltsev, "Transverse effects of microbunch radiative interaction," SLAC-PUB-7181, June 1996
- 3) G.V. Stupakov, "Effect of centrifugal transverse wakefield for microbunch in bend," SLAC-PUB-8028, Revised March 2006
- 4) G.V. Stupakov, "Synchrotron radiation wake in free space," SLAC-PEPRINT-2011-034, Proc. Of PAC97, Vancouver, British Columbia, Canada (1997)
- 5) Chengkun Huang, Thomas J.T. Kwan, and Bruce E. Carlsten, "Two dimensional model for coherent synchrotron radiation," Phys. Rev. ST Accel. Beams. **16**, 010701, (2013)
- 6) Ohmi's talk in theory club, SLAC 2016

Acknowledgements

- Many discussions with K. Ohmi who visited SLAC recently
- Helpfully discussions with my colleagues: Karl Bane, Robert Warnock, Gennady Stupakov
- Benefited from several talks in the theory club by Gennady Stupakov
- Yuantao Ding for providing LCLS parameters